7,912 research outputs found

    Circulating Cell-Free DNA

    Get PDF
    Circulating cell-free DNA (cfDNA) refers to extracellular DNA present in body fluid that may be derived from both normal and diseased cells. The concentration, integrity, genetic, and epigenetic alternations in the cfDNA may suggest pathological conditions of the body, such as inflammation, autoimmune diseases, stress, or even malignancies. cfDNA from patients with malignancies contains variants as those in the tumor tissue cells, thus allowing noninvasive assessment of tumor in real time. The clinical detection of cfDNA is one major application of liquid biopsy and has great application value in the early diagnosis of clinical tumors, real-time progression monitoring, curative effect observation and evaluation, prognosis assessment, and metastasis risk analysis. This chapter summarizes the origin of cell-free DNA and its important clinical applications as a noninvasive biomarker

    First-Principles Investigation of Anistropic Hole Mobilities in Organic Semiconductors

    Get PDF
    We report a simple first-principles-based simulation model (combining quantum mechanics with Marcus−Hush theory) that provides the quantitative structural relationships between angular resolution anisotropic hole mobility and molecular structures and packing. We validate that this model correctly predicts the anisotropic hole mobilities of ruberene, pentacene, tetracene, 5,11-dichlorotetracene (DCT), and hexathiapentacene (HTP), leading to results in good agreement with experiment

    Unidirectional anisotropy in cubic FeGe with antisymmetric spin-spin-coupling

    Full text link
    We report strong unidirectional anisotropy in bulk polycrystalline B20 FeGe measured by ferromagnetic resonance spectroscopy. Bulk and micron-sized samples were produced and analytically characterized. FeGe is a B20 compound with inherent Dzyaloshinskii-Moriya interaction. Lorenz microscopy confirms a skyrmion lattice at 190  K190 \; \text{K} in a magnetic field of 150 mT. Ferromagnetic resonance was measured at 276  K±1  K276 \; \text{K} \pm 1 \; \text{K}, near the Curie temperature. Two resonance modes were observed, both exhibit a unidirectional anisotropy of K=1153  J/m3±10  J/m3K=1153 \; \text{J/m}^3 \pm 10 \; \text{J/m}^3 in the primary, and K=28  J/m3±2  J/m3K=28 \; \text{J/m}^3 \pm 2 \; \text{J/m}^3 in the secondary mode, previously unknown in bulk ferromagnets. Additionally, about 25 standing spin wave modes are observed inside a micron-sized FeGe wedge, measured at room temperature (∼  293\sim \; 293 K). These modes also exhibit unidirectional anisotropy
    • …
    corecore